Step of Proof: exists_functionality_wrt_iff
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
exists
functionality
wrt
iff
:
S
,
T
:Type,
P
,
Q
:(
S
). (
S
=
T
)
(
x
:
S
.
P
(
x
)
Q
(
x
))
((
x
:
S
.
P
(
x
))
(
y
:
T
.
Q
(
y
)))
latex
by ((GenUnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
S
: Type
C1:
2.
T
: Type
C1:
3.
P
:
S
C1:
4.
Q
:
S
C1:
5.
S
=
T
C1:
6.
x
:
S
.
P
(
x
)
Q
(
x
)
C1:
7.
x
:
S
.
P
(
x
)
C1:
y
:
T
.
Q
(
y
)
C
2
:
C2:
1.
S
: Type
C2:
2.
T
: Type
C2:
3.
P
:
S
C2:
4.
Q
:
S
C2:
5.
S
=
T
C2:
6.
x
:
S
.
P
(
x
)
Q
(
x
)
C2:
7.
y
:
T
.
Q
(
y
)
C2:
x
:
S
.
P
(
x
)
C
.
Definitions
t
T
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
x
(
s
)
,
P
Q
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
iff
wf
origin